

aiohttp_security

The library provides security for aiohttp.web [https://docs.aiohttp.org/en/stable/web.html#aiohttp-web].

The current version is 0.4

Contents

	Usage
	Public API

	Authentication

	Identity Policy

	Authorization

	Reference
	Public API functions

	Abstract policies

	How to Make a Simple Server With Authorization

	Permissions with PostgreSQL-based storage
	Database

	Writing policies

	Setup

	Launch application

	Glossary

License

aiohttp_security is offered under the Apache 2 license.

Indices and tables

	Index

	Module Index

	Search Page

Usage

First of all, what is aiohttp_security about?

aiohttp-security is a set of public API functions as well as a
reference standard for implementation details for securing access to
assets served by a wsgi server.

Assets are secured using authentication and authorization as explained
below. aiohttp-security is part of the
aio-libs [https://github.com/aio-libs] project which takes advantage
of asynchronous processing using Python’s asyncio library.

Public API

The API is agnostic to the low level implementation details such that
all client code only needs to implement the endpoints as provided by
the API (instead of calling policy code directly (see explanation
below)).

Via the API an application can:

	remember a user in a local session (remember()),

	forget a user in a local session (forget()),

	retrieve the userid (authorized_userid()) of a
remembered user from an identity (discussed below), and

	check the permission of a remembered user (permits()).

The library internals are built on top of two concepts:

	authentication, and

	authorization.

There are abstract base classes for both types as well as several
pre-built implementations that are shipped with the library. However,
the end user is free to build their own implementations.

The library comes with two pre-built identity policies; one that uses
cookies, and one that uses sessions 1. It is envisioned that in
most use cases developers will use one of the provided identity
policies (Cookie or Session) and implement their own authorization
policy.

The workflow is as follows:

	User is authenticated. This has to be implemented by the developer.

	Once user is authenticated an identity string has to be created for
that user. This has to be implemented by the developer.

	The identity string is passed to the Identity Policy’s remember
method and the user is now remembered (Cookie or Session if using
built-in). Only once a user is remembered can the other API
methods: permits(), forget(), and
authorized_userid() be invoked .

	If the user tries to access a restricted asset the permits()
method is called. Usually assets are protected using the
check_permission() helper. This should return True if
permission is granted.

The permits() method is implemented by the developer as part of
the AbstractAuthorizationPolicy and passed to the
application at runtime via setup.

In addition a check_authorized() also
exists that requires no permissions (i.e. doesn’t call permits()
method) but only requires that the user is remembered
(i.e. authenticated/logged in).

Authentication

Authentication is the process where a user’s identity is verified. It
confirms who the user is. This is traditionally done using a user name
and password (note: this is not the only way).

A authenticated user has no access rights, rather an authenticated
user merely confirms that the user exists and that the user is who
they say they are.

In aiohttp_security the developer is responsible for their own
authentication mechanism. aiohttp_security only requires that the
authentication result in a identity string which corresponds to a
user’s id in the underlying system.

Note

identity is a string that is shared between the browser and
the server. Therefore it is recommended that a random string
such as a uuid or hash is used rather than things like a
database primary key, user login/email, etc.

Identity Policy

Once a user is authenticated the aiohttp_security API is invoked for
storing, retrieving, and removing a user’s identity. This is
accommplished via AbstractIdentityPolicy’s remember(),
identify(), and forget() methods. The Identity Policy is
therefore the mechanism by which a authenticated user is persisted in
the system.

aiohttp_security has two built in identity policy’s for this
purpose. CookiesIdentityPolicy that uses cookies and
SessionIdentityPolicy that uses sessions via
aiohttp-session library.

Authorization

Once a user is authenticated (see above) it means that the user has an
identity. This identity can now be used for checking
access rights or permission using a authorization
policy.

The authorization policy’s permits() method is used for this purpose.

When aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] has an identity it means the
user has been authenticated and therefore has an identity that
can be checked by the authorization policy.

As noted above, identity is a string that is shared between
the browser and the server. Therefore it is recommended that a
random string such as a uuid or hash is used rather than things like
a database primary key, user login/email, etc.

Footnotes

	1

	jwt - json web tokens in the works

Reference

Public API functions

	
aiohttp_security.setup(app, identity_policy, autz_policy)

	Setup aiohttp [https://docs.aiohttp.org/en/stable/structures.html#module-aiohttp] application with security policies.

	Parameters

	
	app – aiohttp aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application] instance.

	identity_policy – indentification policy, an
AbstractIdentityPolicy instance.

	autz_policy – authorization policy, an
AbstractAuthorizationPolicy instance.

	
coroutine aiohttp_security.remember(request, response, identity, **kwargs)

	Remember identity in response, e.g. by storing a cookie or
saving info into session.

The action is performed by registered
AbstractIdentityPolicy.remember().

Usually the identity is stored in user cookies somehow for using by
authorized_userid() and permits().

	Parameters

	
	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	response – aiohttp.web.StreamResponse [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse] and
descendants like aiohttp.web.Response [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response].

	identity (str [https://docs.python.org/3/library/stdtypes.html#str]) – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	kwargs – additional arguments passed to
AbstractIdentityPolicy.remember().

They are policy-specific and may be used, e.g. for
specifiying cookie lifetime.

	
coroutine aiohttp_security.forget(request, response)

	Forget previously remembered identity.

The action is performed by registered
AbstractIdentityPolicy.forget().

	Parameters

	
	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	response – aiohttp.web.StreamResponse [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse] and
descendants like aiohttp.web.Response [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response].

	
coroutine aiohttp_security.check_authorized(request)

	Checker that doesn’t pass if user is not authorized by request.

	Parameters

	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	Return str

	authorized user ID if success

	Raise

	aiohttp.web.HTTPUnauthorized for anonymous users.

Usage:

async def handler(request):
 await check_authorized(request)
 # this line is never executed for anonymous users

	
coroutine aiohttp_security.check_permission(request, permission)

	Checker that doesn’t pass if user has no requested permission.

	Parameters

	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	Raise

	aiohttp.web.HTTPUnauthorized for anonymous users.

	Raise

	aiohttp.web.HTTPForbidden if user is
authorized but has no access rights.

Usage:

async def handler(request):
 await check_permission(request, 'read')
 # this line is never executed if a user has no read permission

	
coroutine aiohttp_security.authorized_userid(request)

	Retrieve userid.

The user should be registered by remember() before the call.

	Parameters

	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	Returns

	str [https://docs.python.org/3/library/stdtypes.html#str] userid or None for session
without signed in user.

	
coroutine aiohttp_security.permits(request, permission, context=None)

	Check user’s permission.

Return True if user remembered in request has specified permission.

Allowed permissions as well as context meaning are depends on
AbstractAuthorizationPolicy implementation.

Actually it’s a wrapper around
AbstractAuthorizationPolicy.permits() coroutine.

The user should be registered by remember() before the call.

	Parameters

	
	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	permission – Requested permission. str [https://docs.python.org/3/library/stdtypes.html#str] or
enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum] object.

	context – additional object may be passed into
AbstractAuthorizationPolicy.permission()
coroutine.

	Returns

	True if registered user has requested permission,
False otherwise.

	
coroutine aiohttp_security.is_anonymous(request)

	Checks if user is anonymous user.

Return True if user is not remembered in request, otherwise
returns False.

	Parameters

	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	
@aiohttp_security.login_required

	Decorator for handlers that checks if user is authorized.

Raises aiohttp.web.HTTPUnauthorized if user is not authorized.

Deprecated since version 0.3: Use check_authorized() async function.

	
@aiohttp_security.has_permission(permission)

	Decorator for handlers that checks if user is authorized
and has correct permission.

Raises aiohttp.web.HTTPUnauthorized if user is not
authorized.

Raises aiohttp.web.HTTPForbidden if user is
authorized but has no access rights.

	Parameters

	permission (str [https://docs.python.org/3/library/stdtypes.html#str]) – requested permission.

Deprecated since version 0.3: Use check_authorized() async function.

Abstract policies

	aiohttp_security is built on top of two abstract policies –

	AbstractIdentityPolicy and
AbstractAuthorizationPolicy.

The first one responds on remembering, retrieving and forgetting
identity into some session storage, e.g. HTTP cookie or
authorization token.

The second is responsible to return persistent userid for
session-wide identity and check user’s permissions.

Most likely sofware developer reuses one of pre-implemented identity
policies from aiohttp_security but build authorization policy
from scratch for every application/project.

Identification policy

	
class aiohttp_security.AbstractIdentityPolicy

	
	
coroutine identify(request)

	Extract identity from request.

Abstract method, should be overriden by descendant.

	Parameters

	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	Returns

	the claimed identity of the user associated request or
None if no identity can be found associated with
the request.

	
coroutine remember(request, response, identity, **kwargs)

	Remember identity.

May use request for accessing required data and response for
storing identity (e.g. updating HTTP response cookies).

kwargs may be used by concrete implementation for passing
additional data.

Abstract method, should be overriden by descendant.

	Parameters

	
	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	response – aiohttp.web.StreamResponse [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse] object or
derivative.

	identity – identity to store.

	kwargs – optional additional arguments. An individual
identity policy and its consumers can decide on
the composition and meaning of the parameter.

	
coroutine forget(request, response)

	Forget previously stored identity.

May use request for accessing required data and response for
dropping identity (e.g. updating HTTP response cookies).

Abstract method, should be overriden by descendant.

	Parameters

	
	request – aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] object.

	response – aiohttp.web.StreamResponse [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse] object or
derivative.

Authorization policy

	
class aiohttp_security.AbstractAuthorizationPolicy

	
	
coroutine authorized_userid(identity)

	Retrieve authorized user id.

Abstract method, should be overriden by descendant.

	Parameters

	identity – an identity used for authorization.

	Returns

	the userid of the user identified by the
identity or None if no user exists related to the
identity.

	
coroutine permits(identity, permission, context=None)

	Check user permissions.

Abstract method, should be overriden by descendant.

	Parameters

	
	identity – an identity used for authorization.

	permission – requested permission. The type of parameter
is not fixed and depends on implementation.

How to Make a Simple Server With Authorization

Simple example:

from aiohttp import web
from aiohttp_session import SimpleCookieStorage, session_middleware
from aiohttp_security import check_permission, \
 is_anonymous, remember, forget, \
 setup as setup_security, SessionIdentityPolicy
from aiohttp_security.abc import AbstractAuthorizationPolicy

Demo authorization policy for only one user.
User 'jack' has only 'listen' permission.
For more complicated authorization policies see examples
in the 'demo' directory.
class SimpleJack_AuthorizationPolicy(AbstractAuthorizationPolicy):
 async def authorized_userid(self, identity):
 """Retrieve authorized user id.
 Return the user_id of the user identified by the identity
 or 'None' if no user exists related to the identity.
 """
 if identity == 'jack':
 return identity

 async def permits(self, identity, permission, context=None):
 """Check user permissions.
 Return True if the identity is allowed the permission
 in the current context, else return False.
 """
 return identity == 'jack' and permission in ('listen',)

async def handler_root(request):
 is_logged = not await is_anonymous(request)
 return web.Response(text='''<html><head></head><body>
 Hello, I'm Jack, I'm {logged} logged in.

 Log me in

 Log me out

 Check my permissions,
 when i'm logged in and logged out.

 Can I listen?

 Can I speak?

 </body></html>'''.format(
 logged='' if is_logged else 'NOT',
), content_type='text/html')

async def handler_login_jack(request):
 redirect_response = web.HTTPFound('/')
 await remember(request, redirect_response, 'jack')
 raise redirect_response

async def handler_logout(request):
 redirect_response = web.HTTPFound('/')
 await forget(request, redirect_response)
 raise redirect_response

async def handler_listen(request):
 await check_permission(request, 'listen')
 return web.Response(body="I can listen!")

async def handler_speak(request):
 await check_permission(request, 'speak')
 return web.Response(body="I can speak!")

async def make_app():
 #
 # WARNING!!!
 # Never use SimpleCookieStorage on production!!!
 # It’s highly insecure!!!
 #

 # make app
 middleware = session_middleware(SimpleCookieStorage())
 app = web.Application(middlewares=[middleware])

 # add the routes
 app.add_routes([
 web.get('/', handler_root),
 web.get('/login', handler_login_jack),
 web.get('/logout', handler_logout),
 web.get('/listen', handler_listen),
 web.get('/speak', handler_speak)])

 # set up policies
 policy = SessionIdentityPolicy()
 setup_security(app, policy, SimpleJack_AuthorizationPolicy())

 return app

if __name__ == '__main__':
 web.run_app(make_app(), port=9000)

Permissions with PostgreSQL-based storage

Make sure that you have PostgreSQL and Redis servers up and running.
If you want the full source code in advance or for comparison, check out
the demo source [https://github.com/aio-libs/aiohttp_security/tree/master/demo].

Database

Launch these sql scripts to init database and fill it with sample data:

psql template1 < demo/sql/init_db.sql

and

psql template1 < demo/sql/sample_data.sql

Now you have two tables:

	for storing users

	users

	id

	login

	passwd

	is_superuser

	disabled

	for storing their permissions

	permissions

	id

	user_id

	permission_name

Writing policies

You need to implement two entities: IdentityPolicy and AuthorizationPolicy.
First one should have these methods: identify, remember and forget.
For second one: authorized_userid and permits. We will use built-in
SessionIdentityPolicy and write our own database-based authorization policy.

In our example we will lookup database by user login and if presents then return
this identity:

async def authorized_userid(self, identity):
 async with self.dbengine as conn:
 where = sa.and_(db.users.c.login == identity,
 sa.not_(db.users.c.disabled))
 query = db.users.count().where(where)
 ret = await conn.scalar(query)
 if ret:
 return identity
 else:
 return None

For permission checking we will fetch the user first, check if he is superuser
(all permissions are allowed), otherwise check if permission is explicitly set
for that user:

async def permits(self, identity, permission, context=None):
 if identity is None:
 return False

 async with self.dbengine as conn:
 where = sa.and_(db.users.c.login == identity,
 sa.not_(db.users.c.disabled))
 query = db.users.select().where(where)
 ret = await conn.execute(query)
 user = await ret.fetchone()
 if user is not None:
 user_id = user[0]
 is_superuser = user[3]
 if is_superuser:
 return True

 where = db.permissions.c.user_id == user_id
 query = db.permissions.select().where(where)
 ret = await conn.execute(query)
 result = await ret.fetchall()
 if ret is not None:
 for record in result:
 if record.perm_name == permission:
 return True

 return False

Setup

Once we have all the code in place we can install it for our application:

from aiohttp_session.redis_storage import RedisStorage
from aiohttp_security import setup as setup_security
from aiohttp_security import SessionIdentityPolicy
from aiopg.sa import create_engine
from aioredis import create_pool

from .db_auth import DBAuthorizationPolicy

async def init(loop):
 redis_pool = await create_pool(('localhost', 6379))
 dbengine = await create_engine(user='aiohttp_security',
 password='aiohttp_security',
 database='aiohttp_security',
 host='127.0.0.1')
 app = web.Application()
 setup_session(app, RedisStorage(redis_pool))
 setup_security(app,
 SessionIdentityPolicy(),
 DBAuthorizationPolicy(dbengine))
 return app

Now we have authorization and can decorate every other view with access rights
based on permissions. There are already implemented two helpers:

from aiohttp_security import check_authorized, check_permission

For each view you need to protect - just apply the decorator on it:

class Web:
 async def protected_page(self, request):
 await check_permission(request, 'protected')
 response = web.Response(body=b'You are on protected page')
 return response

or:

class Web:
 async def logout(self, request):
 await check_authorized(request)
 response = web.Response(body=b'You have been logged out')
 await forget(request, response)
 return response

If someone try to access that protected page he will see:

403: Forbidden

The best part of it - you can implement any logic you want until it
follows the API conventions.

Launch application

For working with passwords there is a good library passlib [https://passlib.readthedocs.io]. Once you’ve
created some users you want to check their credentials on login. Similar
function may do what you are trying to accomplish:

from passlib.hash import sha256_crypt

async def check_credentials(db_engine, username, password):
 async with db_engine as conn:
 where = sa.and_(db.users.c.login == username,
 sa.not_(db.users.c.disabled))
 query = db.users.select().where(where)
 ret = await conn.execute(query)
 user = await ret.fetchone()
 if user is not None:
 hash = user[2]
 return sha256_crypt.verify(password, hash)
 return False

Final step is to launch your application:

python demo/database_auth/main.py

Try to login with admin/moderator/user accounts (with password password)
and access /public or /protected endpoints.

Glossary

	aiohttp

	asyncio based library for making web servers.

	asyncio

	The library for writing single-threaded concurrent code using
coroutines, multiplexing I/O access over sockets and other
resources, running network clients and servers, and other
related primitives.

Reference implementation of PEP 3156 [https://www.python.org/dev/peps/pep-3156]

https://pypi.python.org/pypi/asyncio/

	authentication

	Actions related to retrieving, storing and removing user’s
identity.

Authenticated user has no access rights, the system even has no
knowledge is there the user still registered in DB.

If Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] has an identity it
means the user has some ID that should be checked by
authorization policy.

	authorization

	Checking actual permissions for identified user along with
getting userid.

	identity

	Session-wide str [https://docs.python.org/3/library/stdtypes.html#str] for identifying user.

Stored in local storage (client-side cookie or server-side storage).

Use remember() for saving identity (sign in)
and forget() for dropping it (sign out).

identity is used for getting userid and permission.

	permission

	Permission required for access to resource.

Permissions are just strings, and they have no required
composition: you can name permissions whatever you like.

	userid

	User’s ID, most likely his login or email

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 aiohttp_security	

Index

 A
 | C
 | F
 | H
 | I
 | L
 | P
 | R
 | S
 | U

A

 	
 	AbstractAuthorizationPolicy (class in aiohttp_security)

 	AbstractIdentityPolicy (class in aiohttp_security)

 	aiohttp

 	aiohttp_security (module)

 	
 	asyncio

 	authentication

 	authorization

 	authorized_userid() (aiohttp_security.AbstractAuthorizationPolicy method)

 	(in module aiohttp_security)

C

 	
 	check_authorized() (in module aiohttp_security)

 	
 	check_permission() (in module aiohttp_security)

F

 	
 	forget() (aiohttp_security.AbstractIdentityPolicy method)

 	(in module aiohttp_security)

H

 	
 	has_permission() (in module aiohttp_security)

I

 	
 	identify() (aiohttp_security.AbstractIdentityPolicy method)

 	
 	identity

 	is_anonymous() (in module aiohttp_security)

L

 	
 	login_required() (in module aiohttp_security)

P

 	
 	permission

 	permits() (aiohttp_security.AbstractAuthorizationPolicy method)

 	(in module aiohttp_security)

 	
 	
 Python Enhancement Proposals

 	PEP 3156

R

 	
 	remember() (aiohttp_security.AbstractIdentityPolicy method)

 	(in module aiohttp_security)

S

 	
 	setup() (in module aiohttp_security)

U

 	
 	userid

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/aiohttp-icon-128x128.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 aiohttp_security

 		
 Usage

 		
 Public API

 		
 Authentication

 		
 Identity Policy

 		
 Authorization

 		
 Reference

 		
 Public API functions

 		
 Abstract policies

 		
 Identification policy

 		
 Authorization policy

 		
 How to Make a Simple Server With Authorization

 		
 Permissions with PostgreSQL-based storage

 		
 Database

 		
 Writing policies

 		
 Setup

 		
 Launch application

 		
 Glossary

_static/up-pressed.png

_static/up.png

