
aiohttp_security Documentation
Release 0.4.0-

Andrew Svetlov

Mar 16, 2022

Contents

1 Contents 3
1.1 Usage . 3
1.2 Reference . 5
1.3 How to Make a Simple Server With Authorization . 8
1.4 Permissions with PostgreSQL-based storage . 10
1.5 Glossary . 13

2 License 15

3 Indices and tables 17

Python Module Index 19

Index 21

i

ii

aiohttp_security Documentation, Release 0.4.0-

The library provides security for aiohttp.web.

The current version is 0.4

Contents 1

https://docs.aiohttp.org/en/stable/web.html#aiohttp-web

aiohttp_security Documentation, Release 0.4.0-

2 Contents

CHAPTER 1

Contents

1.1 Usage

First of all, what is aiohttp_security about?

aiohttp-security is a set of public API functions as well as a reference standard for implementation details for securing
access to assets served by a wsgi server.

Assets are secured using authentication and authorization as explained below. aiohttp-security is part of the aio-libs
project which takes advantage of asynchronous processing using Python’s asyncio library.

1.1.1 Public API

The API is agnostic to the low level implementation details such that all client code only needs to implement the
endpoints as provided by the API (instead of calling policy code directly (see explanation below)).

Via the API an application can:

(i) remember a user in a local session (remember()),

(ii) forget a user in a local session (forget()),

(iii) retrieve the userid (authorized_userid()) of a remembered user from an identity (discussed below), and

(iv) check the permission of a remembered user (permits()).

The library internals are built on top of two concepts:

1) authentication, and

2) authorization.

There are abstract base classes for both types as well as several pre-built implementations that are shipped with the
library. However, the end user is free to build their own implementations.

3

https://github.com/aio-libs

aiohttp_security Documentation, Release 0.4.0-

The library comes with two pre-built identity policies; one that uses cookies, and one that uses sessions1. It is en-
visioned that in most use cases developers will use one of the provided identity policies (Cookie or Session) and
implement their own authorization policy.

The workflow is as follows:

1) User is authenticated. This has to be implemented by the developer.

2) Once user is authenticated an identity string has to be created for that user. This has to be implemented by the
developer.

3) The identity string is passed to the Identity Policy’s remember method and the user is now remembered (Cookie
or Session if using built-in). Only once a user is remembered can the other API methods: permits(),
forget(), and authorized_userid() be invoked .

4) If the user tries to access a restricted asset the permits() method is called. Usually assets are protected using
the check_permission() helper. This should return True if permission is granted.

The permits() method is implemented by the developer as part of the AbstractAuthorizationPolicy and
passed to the application at runtime via setup.

In addition a check_authorized() also exists that requires no permissions (i.e. doesn’t call permits()
method) but only requires that the user is remembered (i.e. authenticated/logged in).

1.1.2 Authentication

Authentication is the process where a user’s identity is verified. It confirms who the user is. This is traditionally done
using a user name and password (note: this is not the only way).

A authenticated user has no access rights, rather an authenticated user merely confirms that the user exists and that the
user is who they say they are.

In aiohttp_security the developer is responsible for their own authentication mechanism. aiohttp_security only requires
that the authentication result in a identity string which corresponds to a user’s id in the underlying system.

Note: identity is a string that is shared between the browser and the server. Therefore it is recommended that a
random string such as a uuid or hash is used rather than things like a database primary key, user login/email, etc.

1.1.3 Identity Policy

Once a user is authenticated the aiohttp_security API is invoked for storing, retrieving, and removing a user’s identity.
This is accommplished via AbstractIdentityPolicy’s remember(), identify(), and forget() methods. The
Identity Policy is therefore the mechanism by which a authenticated user is persisted in the system.

aiohttp_security has two built in identity policy’s for this purpose. CookiesIdentityPolicy that uses cookies
and SessionIdentityPolicy that uses sessions via aiohttp-session library.

1.1.4 Authorization

Once a user is authenticated (see above) it means that the user has an identity. This identity can now be used for
checking access rights or permission using a authorization policy.

The authorization policy’s permits() method is used for this purpose.

1 jwt - json web tokens in the works

4 Chapter 1. Contents

aiohttp_security Documentation, Release 0.4.0-

When aiohttp.web.Request has an identity it means the user has been authenticated and therefore has an iden-
tity that can be checked by the authorization policy.

As noted above, identity is a string that is shared between the browser and the server. Therefore it is recommended
that a random string such as a uuid or hash is used rather than things like a database primary key, user login/email, etc.

1.2 Reference

1.2.1 Public API functions

aiohttp_security.setup(app, identity_policy, autz_policy)
Setup aiohttp application with security policies.

Parameters

• app – aiohttp aiohttp.web.Application instance.

• identity_policy – indentification policy, an AbstractIdentityPolicy in-
stance.

• autz_policy – authorization policy, an AbstractAuthorizationPolicy in-
stance.

coroutine aiohttp_security.remember(request, response, identity, **kwargs)
Remember identity in response, e.g. by storing a cookie or saving info into session.

The action is performed by registered AbstractIdentityPolicy.remember().

Usually the identity is stored in user cookies somehow for using by authorized_userid() and
permits().

Parameters

• request – aiohttp.web.Request object.

• response – aiohttp.web.StreamResponse and descendants like aiohttp.
web.Response.

• identity (str) – aiohttp.web.Request object.

• kwargs – additional arguments passed to AbstractIdentityPolicy.
remember().

They are policy-specific and may be used, e.g. for specifiying cookie lifetime.

coroutine aiohttp_security.forget(request, response)
Forget previously remembered identity.

The action is performed by registered AbstractIdentityPolicy.forget().

Parameters

• request – aiohttp.web.Request object.

• response – aiohttp.web.StreamResponse and descendants like aiohttp.
web.Response.

coroutine aiohttp_security.check_authorized(request)
Checker that doesn’t pass if user is not authorized by request.

Parameters request – aiohttp.web.Request object.

Return str authorized user ID if success

1.2. Reference 5

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/structures.html#module-aiohttp
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Response
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request

aiohttp_security Documentation, Release 0.4.0-

Raise aiohttp.web.HTTPUnauthorized for anonymous users.

Usage:

async def handler(request):
await check_authorized(request)
this line is never executed for anonymous users

coroutine aiohttp_security.check_permission(request, permission)
Checker that doesn’t pass if user has no requested permission.

Parameters request – aiohttp.web.Request object.

Raise aiohttp.web.HTTPUnauthorized for anonymous users.

Raise aiohttp.web.HTTPForbidden if user is authorized but has no access rights.

Usage:

async def handler(request):
await check_permission(request, 'read')
this line is never executed if a user has no read permission

coroutine aiohttp_security.authorized_userid(request)
Retrieve userid.

The user should be registered by remember() before the call.

Parameters request – aiohttp.web.Request object.

Returns str userid or None for session without signed in user.

coroutine aiohttp_security.permits(request, permission, context=None)
Check user’s permission.

Return True if user remembered in request has specified permission.

Allowed permissions as well as context meaning are depends on AbstractAuthorizationPolicy im-
plementation.

Actually it’s a wrapper around AbstractAuthorizationPolicy.permits() coroutine.

The user should be registered by remember() before the call.

Parameters

• request – aiohttp.web.Request object.

• permission – Requested permission. str or enum.Enum object.

• context – additional object may be passed into AbstractAuthorizationPolicy.
permission() coroutine.

Returns True if registered user has requested permission, False otherwise.

coroutine aiohttp_security.is_anonymous(request)
Checks if user is anonymous user.

Return True if user is not remembered in request, otherwise returns False.

Parameters request – aiohttp.web.Request object.

@aiohttp_security.login_required
Decorator for handlers that checks if user is authorized.

Raises aiohttp.web.HTTPUnauthorized if user is not authorized.

6 Chapter 1. Contents

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request

aiohttp_security Documentation, Release 0.4.0-

Deprecated since version 0.3: Use check_authorized() async function.

@aiohttp_security.has_permission(permission)
Decorator for handlers that checks if user is authorized and has correct permission.

Raises aiohttp.web.HTTPUnauthorized if user is not authorized.

Raises aiohttp.web.HTTPForbidden if user is authorized but has no access rights.

Parameters permission (str) – requested permission.

Deprecated since version 0.3: Use check_authorized() async function.

1.2.2 Abstract policies

aiohttp_security is built on top of two abstract policies – AbstractIdentityPolicy and
AbstractAuthorizationPolicy .

The first one responds on remembering, retrieving and forgetting identity into some session storage, e.g. HTTP cookie
or authorization token.

The second is responsible to return persistent userid for session-wide identity and check user’s permissions.

Most likely sofware developer reuses one of pre-implemented identity policies from aiohttp_security but build autho-
rization policy from scratch for every application/project.

Identification policy

class aiohttp_security.AbstractIdentityPolicy

coroutine identify(request)
Extract identity from request.

Abstract method, should be overriden by descendant.

Parameters request – aiohttp.web.Request object.

Returns the claimed identity of the user associated request or None if no identity can be found
associated with the request.

coroutine remember(request, response, identity, **kwargs)
Remember identity.

May use request for accessing required data and response for storing identity (e.g. updating HTTP response
cookies).

kwargs may be used by concrete implementation for passing additional data.

Abstract method, should be overriden by descendant.

Parameters

• request – aiohttp.web.Request object.

• response – aiohttp.web.StreamResponse object or derivative.

• identity – identity to store.

• kwargs – optional additional arguments. An individual identity policy and its consumers
can decide on the composition and meaning of the parameter.

1.2. Reference 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse

aiohttp_security Documentation, Release 0.4.0-

coroutine forget(request, response)
Forget previously stored identity.

May use request for accessing required data and response for dropping identity (e.g. updating HTTP
response cookies).

Abstract method, should be overriden by descendant.

Parameters

• request – aiohttp.web.Request object.

• response – aiohttp.web.StreamResponse object or derivative.

Authorization policy

class aiohttp_security.AbstractAuthorizationPolicy

coroutine authorized_userid(identity)
Retrieve authorized user id.

Abstract method, should be overriden by descendant.

Parameters identity – an identity used for authorization.

Returns the userid of the user identified by the identity or None if no user exists related to the
identity.

coroutine permits(identity, permission, context=None)
Check user permissions.

Abstract method, should be overriden by descendant.

Parameters

• identity – an identity used for authorization.

• permission – requested permission. The type of parameter is not fixed and depends on
implementation.

1.3 How to Make a Simple Server With Authorization

Simple example:

from aiohttp import web
from aiohttp_session import SimpleCookieStorage, session_middleware
from aiohttp_security import check_permission, \

is_anonymous, remember, forget, \
setup as setup_security, SessionIdentityPolicy

from aiohttp_security.abc import AbstractAuthorizationPolicy

Demo authorization policy for only one user.
User 'jack' has only 'listen' permission.
For more complicated authorization policies see examples
in the 'demo' directory.
class SimpleJack_AuthorizationPolicy(AbstractAuthorizationPolicy):

async def authorized_userid(self, identity):

(continues on next page)

8 Chapter 1. Contents

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse

aiohttp_security Documentation, Release 0.4.0-

(continued from previous page)

"""Retrieve authorized user id.
Return the user_id of the user identified by the identity
or 'None' if no user exists related to the identity.
"""
if identity == 'jack':

return identity

async def permits(self, identity, permission, context=None):
"""Check user permissions.
Return True if the identity is allowed the permission
in the current context, else return False.
"""
return identity == 'jack' and permission in ('listen',)

async def handler_root(request):
is_logged = not await is_anonymous(request)
return web.Response(text='''<html><head></head><body>

Hello, I'm Jack, I'm {logged} logged in.

Log me in

Log me out

Check my permissions,
when i'm logged in and logged out.

Can I listen?

Can I speak?

</body></html>'''.format(
logged='' if is_logged else 'NOT',

), content_type='text/html')

async def handler_login_jack(request):
redirect_response = web.HTTPFound('/')
await remember(request, redirect_response, 'jack')
raise redirect_response

async def handler_logout(request):
redirect_response = web.HTTPFound('/')
await forget(request, redirect_response)
raise redirect_response

async def handler_listen(request):
await check_permission(request, 'listen')
return web.Response(body="I can listen!")

async def handler_speak(request):
await check_permission(request, 'speak')
return web.Response(body="I can speak!")

async def make_app():
#
WARNING!!!
Never use SimpleCookieStorage on production!!!
It’s highly insecure!!!

(continues on next page)

1.3. How to Make a Simple Server With Authorization 9

aiohttp_security Documentation, Release 0.4.0-

(continued from previous page)

#

make app
middleware = session_middleware(SimpleCookieStorage())
app = web.Application(middlewares=[middleware])

add the routes
app.add_routes([

web.get('/', handler_root),
web.get('/login', handler_login_jack),
web.get('/logout', handler_logout),
web.get('/listen', handler_listen),
web.get('/speak', handler_speak)])

set up policies
policy = SessionIdentityPolicy()
setup_security(app, policy, SimpleJack_AuthorizationPolicy())

return app

if __name__ == '__main__':
web.run_app(make_app(), port=9000)

1.4 Permissions with PostgreSQL-based storage

Make sure that you have PostgreSQL and Redis servers up and running. If you want the full source code in advance
or for comparison, check out the demo source.

1.4.1 Database

Launch these sql scripts to init database and fill it with sample data:

psql template1 < demo/sql/init_db.sql

and

psql template1 < demo/sql/sample_data.sql

Now you have two tables:

• for storing users

users
id
login
passwd
is_superuser
disabled

• for storing their permissions

10 Chapter 1. Contents

https://github.com/aio-libs/aiohttp_security/tree/master/demo

aiohttp_security Documentation, Release 0.4.0-

permissions
id
user_id
permission_name

1.4.2 Writing policies

You need to implement two entities: IdentityPolicy and AuthorizationPolicy. First one should have these methods:
identify, remember and forget. For second one: authorized_userid and permits. We will use built-in SessionIdentity-
Policy and write our own database-based authorization policy.

In our example we will lookup database by user login and if presents then return this identity:

async def authorized_userid(self, identity):
async with self.dbengine as conn:

where = sa.and_(db.users.c.login == identity,
sa.not_(db.users.c.disabled))

query = db.users.count().where(where)
ret = await conn.scalar(query)
if ret:

return identity
else:

return None

For permission checking we will fetch the user first, check if he is superuser (all permissions are allowed), otherwise
check if permission is explicitly set for that user:

async def permits(self, identity, permission, context=None):
if identity is None:

return False

async with self.dbengine as conn:
where = sa.and_(db.users.c.login == identity,

sa.not_(db.users.c.disabled))
query = db.users.select().where(where)
ret = await conn.execute(query)
user = await ret.fetchone()
if user is not None:

user_id = user[0]
is_superuser = user[3]
if is_superuser:

return True

where = db.permissions.c.user_id == user_id
query = db.permissions.select().where(where)
ret = await conn.execute(query)
result = await ret.fetchall()
if ret is not None:

for record in result:
if record.perm_name == permission:

return True

return False

1.4. Permissions with PostgreSQL-based storage 11

aiohttp_security Documentation, Release 0.4.0-

1.4.3 Setup

Once we have all the code in place we can install it for our application:

from aiohttp_session.redis_storage import RedisStorage
from aiohttp_security import setup as setup_security
from aiohttp_security import SessionIdentityPolicy
from aiopg.sa import create_engine
from aioredis import create_pool

from .db_auth import DBAuthorizationPolicy

async def init(loop):
redis_pool = await create_pool(('localhost', 6379))
dbengine = await create_engine(user='aiohttp_security',

password='aiohttp_security',
database='aiohttp_security',
host='127.0.0.1')

app = web.Application()
setup_session(app, RedisStorage(redis_pool))
setup_security(app,

SessionIdentityPolicy(),
DBAuthorizationPolicy(dbengine))

return app

Now we have authorization and can decorate every other view with access rights based on permissions. There are
already implemented two helpers:

from aiohttp_security import check_authorized, check_permission

For each view you need to protect - just apply the decorator on it:

class Web:
async def protected_page(self, request):

await check_permission(request, 'protected')
response = web.Response(body=b'You are on protected page')
return response

or:

class Web:
async def logout(self, request):

await check_authorized(request)
response = web.Response(body=b'You have been logged out')
await forget(request, response)
return response

If someone try to access that protected page he will see:

403: Forbidden

The best part of it - you can implement any logic you want until it follows the API conventions.

12 Chapter 1. Contents

aiohttp_security Documentation, Release 0.4.0-

1.4.4 Launch application

For working with passwords there is a good library passlib. Once you’ve created some users you want to check their
credentials on login. Similar function may do what you are trying to accomplish:

from passlib.hash import sha256_crypt

async def check_credentials(db_engine, username, password):
async with db_engine as conn:

where = sa.and_(db.users.c.login == username,
sa.not_(db.users.c.disabled))

query = db.users.select().where(where)
ret = await conn.execute(query)
user = await ret.fetchone()
if user is not None:

hash = user[2]
return sha256_crypt.verify(password, hash)

return False

Final step is to launch your application:

python demo/database_auth/main.py

Try to login with admin/moderator/user accounts (with password password) and access /public or /protected end-
points.

1.5 Glossary

aiohttp asyncio based library for making web servers.

asyncio The library for writing single-threaded concurrent code using coroutines, multiplexing I/O access over sock-
ets and other resources, running network clients and servers, and other related primitives.

Reference implementation of PEP 3156

https://pypi.python.org/pypi/asyncio/

authentication Actions related to retrieving, storing and removing user’s identity.

Authenticated user has no access rights, the system even has no knowledge is there the user still registered in
DB.

If Request has an identity it means the user has some ID that should be checked by authorization policy.

authorization Checking actual permissions for identified user along with getting userid.

identity Session-wide str for identifying user.

Stored in local storage (client-side cookie or server-side storage).

Use remember() for saving identity (sign in) and forget() for dropping it (sign out).

identity is used for getting userid and permission.

permission Permission required for access to resource.

Permissions are just strings, and they have no required composition: you can name permissions whatever you
like.

userid User’s ID, most likely his login or email

1.5. Glossary 13

https://passlib.readthedocs.io
https://www.python.org/dev/peps/pep-3156
https://pypi.python.org/pypi/asyncio/
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.python.org/3/library/stdtypes.html#str

aiohttp_security Documentation, Release 0.4.0-

14 Chapter 1. Contents

CHAPTER 2

License

aiohttp_security is offered under the Apache 2 license.

15

aiohttp_security Documentation, Release 0.4.0-

16 Chapter 2. License

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

aiohttp_security Documentation, Release 0.4.0-

18 Chapter 3. Indices and tables

Python Module Index

a
aiohttp_security, 5

19

aiohttp_security Documentation, Release 0.4.0-

20 Python Module Index

Index

A
AbstractAuthorizationPolicy (class in aio-

http_security), 8
AbstractIdentityPolicy (class in aio-

http_security), 7
aiohttp, 13
aiohttp_security (module), 5
asyncio, 13
authentication, 13
authorization, 13
authorized_userid() (aio-

http_security.AbstractAuthorizationPolicy
method), 8

authorized_userid() (in module aio-
http_security), 6

C
check_authorized() (in module aiohttp_security),

5
check_permission() (in module aiohttp_security),

6

F
forget() (aiohttp_security.AbstractIdentityPolicy

method), 7
forget() (in module aiohttp_security), 5

H
has_permission() (in module aiohttp_security), 7

I
identify() (aiohttp_security.AbstractIdentityPolicy

method), 7
identity, 13
is_anonymous() (in module aiohttp_security), 6

L
login_required() (in module aiohttp_security), 6

P
permission, 13
permits() (aiohttp_security.AbstractAuthorizationPolicy

method), 8
permits() (in module aiohttp_security), 6
Python Enhancement Proposals

PEP 3156, 13

R
remember() (aiohttp_security.AbstractIdentityPolicy

method), 7
remember() (in module aiohttp_security), 5

S
setup() (in module aiohttp_security), 5

U
userid, 13

21

	Contents
	Usage
	Reference
	How to Make a Simple Server With Authorization
	Permissions with PostgreSQL-based storage
	Glossary

	License
	Indices and tables
	Python Module Index
	Index

